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Abstract. The Hamilton-Jacobi equations obeyed by the world function R of a V, are two 
simultaneous equations in eight independent variables. We utilise the symmetries pos- 
sessed by the Godel metric to reduce these equations to a single equation in only two 
variables. R may then be exhibited in a parametric form involving only a single parameter. 
If no such parameters are to be admitted one has to have recourse to power series. 
Accordingly, after some remarks on analyticity, initial terms of various power series for fl 
are calculated and certain of their features briefly discussed. 

1. Introduction 

The world function R(x, x ’ )  (Synge 1960) is a two-point scalar, loosely defined to be half 
the square of the geodesic distance between x and x ’ .  Since it is effectively a 
characteristic function associated with the geodesics it contains all the integral 
information about them from the Hamiltonian viewpoint. It is the fundamental integral 
quantity which can be defined upon an arbitrary Riemannian manifold and, as one 
might expect, is of prime importance in obtaining the Green functions for wave 
equations on curved backgrounds (e.g. Hadamard 1952, Friedlander 1975). Again, 
DeWitt (1975) in his discussion of quantum field theory in curved space-time derives 
expressions for the Feynman propagator of massive scalar particles solely in terms of fl 
and its concomitants. 

One would naturally like to be able to calculate R in closed form. Hitherto this has 
been done only in certain special cases, distinguished by their symmetries (Buchdahl 
1972, Warner 1978). In view of the high degree of symmetry of the Godel metric one 
might expect its world function also to be obtainable in closed form. In fact it is not, 
although it is possible to exhibit s2 in a form which is, so to speak, only one step removed 
from being closed, namely in parametric form involving only a single parameter. If the 
presence of such a parameter is disallowed one has to be content with some form of 
approximation. A substantial part of this paper is therefore devoted to the expansion of 

in power series, the approach taken being similar to that of Buchdahl and Warner 
(1979). 

We take the metric in the usual form (Hawking and Ellis 1973) 

ds2=-dt2+dx2-$exp(2hwx)dy2-2exp(J?wx) d t d y + d z 2 .  (1.1) 
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Observe that this metric is a direct sum of the two metrics 

ds: = -dt2+dx2-iexp(2J2wx)dy2-2exp(J%ox)dt dy (1.2) 
and 

(1.3) 2 ds: = d z  . 
Hence the Godel universe is the product of a V3 and R I. It will be shown in 9 2 that in 
effect we therefore have to calculate only the world function Cl, of the metric (1.2). This 
metric has four Killing vector fields, and in Q 3 we show that as a consequence the six 
variables upon which sZl depends can only appear in two combinations, denoted by p 
and q. The problem is then reduced to solving a single partial differential equation in p 
and q. An equation very simply related to it is separable and it therefore becomes 
possible to find a parametric form of the world function involving only one parameter. 
The details are set out in 9 4. In 9 5 ,  after showing that a1 is an analytic function of the 
variables p and 4 (for p and q sufficiently small), early terms of the power series for ill 
are determined. In the two succeeding sections wc investigate the series for (I1 in 
ascending powers of p on the one hand or of q on the other, with coefficients which are 
functions of q and p ,  respectively, and remark briefly upon the singularities of these 
coefficients. 

Throughout this paper Roman indices run from 0 to 3 and Greek indices from 0 to 2. 
We set xo := t, x1 := x, x 2  := y ,  x 3  := 2. 

2. Reduction to three dimensions 

0 is defined by \&;" d";' ;; R(xk",  x k ' ) = i ( p ' ' - p ' )  gij- -dp, 

where the integral is taken along the unique geodesic form x k'  to x k", and p is an affine 
parameter. 

Observe that if y ( p )  is a geodesic in the Godel V, and p is an affine parameter, then 
the projection of y on the first three coordinates is a geodesic in the V3 whose metric is 
given by (1.2) and p is also an affine parameter in this V3. Hence 

=al(xa", x"')"''-p') ( E)2 dPL. 

Now tk  := (0, 0, 0, 1) is a Killing field and hence d t / d p  = constant along the geodesic. 
Thus 

and so 
dz/dp = ( z " - t ~ ) / ( p " - p ' ) ,  

a(xk", X k ' )  = f l l ( x P " ,  Xa')+:"''-z')2. 

Therefore it suffices to calculate al. 
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3. Reduction of the number of variables: reduced variables 

If tk is a Killing field in a V4 then n(xk', x k )  must satisfy the equation 

S k ' n , k 8 +  t k n , k  = 0. 

e(,), 5(2),  5(3) and 5(4) are commonly quoted (e.g. Synge 1960, p 337) and &, can easily be 
shown to satisfy the Killing equations. This implies that the metric (1.2) has four Killing 
fields which are merely the projections of 5(2),  .$(3), and t(5) onto the first three 
coordinates. Hence RI satisfies 

These equations may be solved by using the method outlined in Forsyth (1954). The 
result is that ill must be solely a function of the 'reduced variables' 

p := [ ( u ' - u ) 2 + w 2 5 2 ] / 4 u u '  

and 

(3.5) 

(3.6) 

where 
- JZwx 

9 ~ : = e  , -JZwx' U' := e 

6 := y ' - . y ,  7 := t ' -  t. 

The world function 0, also satisfies the differential equations (Syr :e 1960, p 51) 

g"P'n,,,,n1,p. = 2R1, gupnl ,u .nl ,B = 2%. 

Explicitly, 

($) + 2ur2(  %)' - 4u'( 7) an, ($1 an + ( T)  an1 = 2121, 

and an identical equation with unprimed replacing primed variables. Using the fact that 



512 N P Warner and H A  Buchdahl 

sZl depends only upon p and q, both these equations reduce to the same, formally very 
simple, equation 

(3.7) 

4. in parametric form 

In equation (3.7) set sZ1 := ~EV:, where E is a constant which takes the values -1,O, 1 
for time-like, light-like and space-like geodesics respectively, in the V3 whose metric is 
given by (1.2). Then 

(4.1) 
The usual prescription for solving the Hamilton-Jacobi equations for the characteristic 
function (Conway and McConnell 1940, editors’ appendix, note 2) may be generalised 
to cover also reduced Hamilton-Jacobi equations; see Warner (1978, Q 9). In the 
extreme case (4.1) where only a single equation remains the prescription is this: find a 
complete integral f(p,  q ;  k )  of the equation (4.1) with f replacing VI, and then 

2 p ( p  + i )2(av l /ap)2+(p  - i)(av1/aq)2 = Ew-2(p + I). 

Vl(P, 4 )  =f(p,  4 ;  k ) ,  (4.2) 

af/ak = 0. (4.3) 

where k is to be eliminated in favour of p ,  q by means of the condition 

Since (4.1) is separable the determination o f f  is straightforward: 

(4.4) 

with 

A L ( E  - k 2 ) / ( E  + k2).  (4.5) 
(4.3) now reads explicitly 

2 (4.6) 

(As a matter of convenience it has been assumed temporarily that 0 < A < 1 here.) q may 
now be removed from (4.4) by means of (4.6) to give 

1 - ~ [ E ( A  + ( p  + A P ’ ) - ~ / ~  dp. (4.7) I v -1 

The various integrals above are elementary. Before evaluating them one should 
note the following restrictions on the values of A : (i) -a < A  < -1 when E = -1 and (ii) 
-1 < A  < 1 when E = 1, the light-like case corresponding to A = -1. When A < 0 we set 
A ‘  := -A. Then explicitly 

(i) ~ = - l ,  l<A’<co,  

Vl = (l/w)[(A’- 1)/A’]1/2 sin-’ (A’”’’’, 

0 = [ ( A ’ +  l)/A’]1’2 sin-’ (A’p)’I2-2 sin-’ [ ( A ’ +  l )p/(p + 1)]”* -4 ;  

(4.8a) 

(4.8b) 
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( i i a ) E = l , O < A ’ < l ,  

V1 = ( l / w ) [ ( l  -A’)”’]*’’ sin-’ 

together with (4.8b); 

(iib) E = 1, O < A  < 1, 
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(4.9) 

VI = ( l / w ) [ ( l  + A ) / A ] ’ / 2  sinh-’ (Ap)’/*,  

0 = (1 - A/A)’” sinh-’ (Ap)’” - 2 sin-’ [( 1 - A ) p / (  p + 1)]’’2 - q. 

(4.10a) 

(4. lob: 

In the time-like case, for example, the world function R is then given by 

(4.11) 

with A ‘  given by (4.8b). It may be confirmed that in the limit w + 0 one obtains from this 
the correct flat-space world function 

1 / 2  2 1 .n=-[(A’-1)/2A’w2][sin-’ (A’p )  1 + ~ ( z ‘ - z ) ~ ,  

R,=o = - ; ( t ’ - t ) 2 + $ ( X ~ - X ) 2 - ~ ( y ’ - y ) 2 + ~ ( Z ’ - Z )  2 - ( i - t ) ( y ’ - y ) .  

(4.12) 

It remains to consider the light-like case. Then A ’  = 1 so that VI = 0, of course. The 

(4.13) 

It should be borne in mind that, except in the case of equation (4.11), we have been 
dealing with the subspace z = constant. Therefore (4.13), for instance, is really the 
equation of the intersection of the light cone with planes z =constant; and in the 
‘time-like case’ and the ‘light-like case’ the geodesics in the original V4 may of course be 
space-like: for this to occur it is only necessary for ( ~ ’ - 2 ) ~  to be sufficiently large. 

equation of the light cone is given by (4.8b), namely 

q = J2 sin-’ P ’ / ~ -  2 sin-’ [2p/(p + I)]’”. 

5. Series expansion and analyticity 

Since the metric (1.2) is analytic in x, y and t, it follows (Buchdahl and Warner 1979) 
that R1 is an analytic function of x m  and X” for I x “ - x ‘ I  sufficiently small. We wish to 
show that ill is analytic in p and q, for p and q sufficiently small. 

Expand RI into a series in ascending powers of x’, y’, t’, x, y ,  t. Equations (3.1) and 
(3.2) imply that the terms in y ’ ,  y ,  t’, t can be grouped into terms involving only 
5 := y ’ -  y and r := t’- t. Observe that the metric is invariant under simultaneous sign 
reversal of y and t. Hence RI must be invariant under simultaneous interchange of y f  
with y and t’ with t. This means that 5 and r can appear in the series only in the 
combinations t2, 57 and r2 ,  Define 

2 2 
771 := x’, 772 := x ,  773 := 5 , 774 := &, 775 := T 

21 := x’, 2 2  := x ,  2 3  := p, 2 4  := q ,z5 := 57. 
and 

2 

From the preceding argument, RI is analytic in the variables v l , .  . . , v 5 .  
Let 
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Observe that f is analytic in (, x, x' provided lw(/  < U ' +  U .  Note also that only even 
powers of 6 appear in a power series expansion off about 6 = 0. There therefore exists 
an analytic function g such that g(773) =f((). Now 

so that zl,. . . , z5 are analytic functions of q l , .  . . , q5.  Furthermore the Jacobian 
determinant of this transformation is simply 

which vanishes nowhere. Hence locally we can analytically invert this transformation. 
When I x D ' - x a l  is sufficiently small, a, is therefore an analytic function of z l , .  . . , zs 
and thus of p and q2.  

The power series for Cll has the generic form 

a,= k + ( a l p  + ~ 2 4 ' )  + (b ip2+ bzpq2 + b3q4) + h p 3  + c2p2q' + c3pq 4 + ~ 4 q  6 ) 

+(d lp4  + d2p3q2  + d3p2q4 + d4pq6+ d5q8) + . . . . (5.1) 

Employing the coincidence limits of a, a,l and (Synge 1960, p 57) ,  one can show 
that k = 0, a l  = U-' and a2 = -&'. The remaining terms can be found by substitution 
of (5 .1)  into (3.7). The result is 

Cl,= U-' [ (  p - iq2)  - $( p 2  + p q 2 )  + &(8p3 + p 2 q 2  -pq4) 

-&(108p4 + 2 3 p 3 q 2  + 25p2q4 + 2pq6)]  +OS, (5.2) 

where Os denotes terms of degree 5 or more in p and q 2 .  
It is not easy to find useful limits on the values of p and q which ensure convergence 

of (5 .2) .  The preceding analyticity arguments will give some limits, but these are 
exceedingly weak. 

6. Power series in p 

We now consider a power series of the form 
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dots indicating differentiation with respect to q. These can be integrated to give 
1 - 2  2 

-2  

uo=-3w q , 

u 1 = w  qco tq ,  

U’ = -aw -’[q2 cosec4 q + q cot q(2 - 3 cosec’ q )  + 2 cot2 41, (6.2) 
a 3 -1 - 24wP2[6q3 cot q cosec6 q + 3q2 cosec4 q ( 8  - 9 cosec2 q )  

+q cot q ( 8  - 32 cosec’ q + 39 cosec4 q )  + 6 cot2 q(2 -- 3 cosec’ q)] .  

The choice of the constants of integration is made in such a way that the a ,  are even 
functions of q, not singular as q + 0, and so that they are consistent with the coincidence 
limits of a, and a;,. One can easily check that (6.1) and (6.2) are in harmony 
with (5.2). 

It is interesting to note that as q + f ~ ,  u l ,  a2 and u3 become singular. The limit 
+ f~ becomes t’ - t + f r / w  as 6 + 0. However, Kundt (1956) has shown that for 

geodesics in an E neighbourhood of the t axis, the points (x ,  y ,  t‘) and ( x ,  y ,  t )  are 
conjugate for 

t’- t = k T / w  + O ( E ) ,  k = i l ,  i 2 , .  . . . 

Therefore the singular points of the coefficients of the series (6.1) occur at the nearest 
pair of conjugate points on such geodesics in the limit p + 0 along their length. 

7. Power series in q 

This time we look for a power series solution of the form 

ai = b o ( ~ ) + b i ( p ) q ~ + b z ( p ) q ~ + O ( q ~ ) .  

Substitution of this into (3.7) yields the equations 

p ( p + l ) d g  -w-’b0=0, 

2p(p + 1)2dod1+2(p - 1)b: - ~ - ’ ( p  + 1)bi = O ,  

p ( p  + l)’(b? + 2dOd2) + 8 ( p  - l)bib2-W-2(p + 1)bz = 0. 

(7.1) 

The equations are simplified by the change of variable p =: sinh2 r. If dots now indicate 
differentiation with respect to r, 

bg - 40-2bo = 0,  

dodl +4(tanh2 r -sech2 r)b: -2wP2bl = 0, 

dob2+$d:  +16(tanh2 r-sech’ r)blb2-2w-2b2=0. 

These are easily integrated to give 

bo = r2/w2, b i =  r/2w2(r - 2 tanh r), 

tanh r 
[r (tanh’ r - 3) + 3 tanh r]. 

1 
b2 =- 

120’ (r -2  tanh r)4 

(7.2) 

The constants of integration are again determined in such a way that the b, are not 
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singular asp  + 0, and so that they are consistent with the coincidence limits of R, and 
a,,,. Once again, (7.1) and (7.2) are in harmony with (5.2). 

It is apparent that bl and bZ are singular at ro, where ro satisfies ro = 2 tanh ro, 
ro = 1.915 . . . . We conjecture that this corresponds to the appearance of pairs of points 
which can be connected by more than one geodesic when r roe 

8. Concluding remarks 

In the course of this paper we have solved the partial differential equation (3.7) in power 
series without having encountered any problems with the determination of arbitrary 
functions. The selection of the appropriate solution of (3.7) has been achieved (i) by 
appealing to the analyticity of R in the capacity of a function of suitably chosen 
variables, and (ii) by being able to specify the actual or generic form of the initial terms 
of such a series by appealing to coincidence limits. 

In our experience with world functions we have found that singularities seem to 
appear for one of two reasons. First, we shall obviously have singular behaviour if the 
metric itself is singular or degenerate at some point, such as in the case of the origin of 
the Schwarzschild metric (Buchdahl and Warner 1979). Secondly, the world function 
will fail to be analytic in a region if it contains a pair of points which can be connected by 
more than one geodesic. This is not surprising when one bears in mind that the very 
definition of a(xk", x k') requires the geodesic from x k' to x k" to be unique. 
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